CRM 95-87 / June 1995

Procedures and Software for

Assessing Uncertainty in Cost

~ Estimates

Henry L. Eskew e Walter R. Nunn

~ DISTRIBUTION STATEMENT A
Apprpve_ad for Public Release
Distribution Unlimited

" Center for Naval Analyses

4401 Ford Avenue * Alexandria, Virginia 22302-1498

DTIC QUALITY INSPECTED 2

780 62906661



Approved for distribution:

Bl
Paul E. Speer

Director, Resources Team
Support Plannlng and Management Dwns:on ,

This document represents the best opinion of CNA at the time of issue.
It does not necessarily represent the opinion of the Department of the Navy.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
" For copies of this document, call the CNA Documem Control and Dlstrlbutmn Section (703) 8

Copyright © 1995 The CNA Corporation




REPORT DOCUMENTATION PAGE VAN e orgs

Public reporting burden for this collection of information Is estimated to average 1 hour per responss, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headguarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and 1o the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
blank) June 1995 Final

5. FUNDING NUMBERS
C - N00014-91-C-0002

4. TITLE AND SUBTITLE
Procedures and Software for Assessing Uncertainty in Cost

Estimates

6. AUTHOR(S)

HIL. Eskew, WR Nunn

8. PERFORMING ORGANIZATION
REPORT NUMBER
CRM 95-87

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Center for Naval Analyses
4401 Ford Avenue
Alexandria, Virginia 22302-1498

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution unlimited

13. ABSTRACT (Maximum 200 Words)

With extensive literature on the treatment of uncertainty in cost estimates, and because
several uncertainty software packages are now available, the Naval Center for Cost
Analysis asked the Center for Naval Analyses to conduct a study with the objective of
evaluating the procedures and software that it now employs. This report begins with a
discussion of introductory analytical issues and then focuses on the software packages
that were evaluated. Additional analytical questions are addressed in connection with
those evaluations.

14, SUBJECT TERMS

assessments, computer programs, cost estimates, costs, defense economics, economic theory,

economics

15. NUMBER OF PAGES
46

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std, Z39-18
208-102




Contents

Introductionandsummary . . . . . ... ... ... ......

Analytical preliminaries . . . . ... ... ............
A note on concept and terminology . . ... ... ...,
A simple example of cost uncertainty analysis . . . . . ..

RISK . . ... e
Workscreens and further analyticalissues . . . . .. ...

CrystalBalland NCAP . . . . ... ...............
Detailed comparison of Crystal Ball and NCAP . . . . ..
Documentation. . . . .. ... ... ... ... ...
Runningtime. . .. ... ... ... .........

Size limitations . . . . .. ... ... ..... R

Number of variables analyzed . . . . . ... ... ..

Ability to handle correlations . . . ... .......
Distributions of randomvariables . . . . . . ... ..
Concludingremarks . . . . ... ... ...........

Appendix A: Literaturereview . . . . ... ... ........
Introduction . . . . ... .. ... ... 000
Discussion . . ... ... ... ... ...,

Definitionof “risk” . . . . ... ... ... ... ...
No methodologyis “best”. . . . . ... ... ... ..
Probability distributions . . . . . ... ........
Correlations betweencosts. . . . ... ... .....
Data collectionand analysis . . . ... ... ... ..
Comparison of selected software packages . . . . ... ..
CLT—Central Limit Theorem (USASSDC) [7]. . . .
FRISKEM—Formal Risk Evaluation Methodology
(Aerospace) [18] . . .. ... ... .........
PACER—Parametric Cost-Estimating Relationship
Module (DSMC) [7]

.................

29
29
30
30
31
32
33
33
33
33



ii

@RISK—Spreadsheet Add-in Model (Palisade

Corp) 7] . . . o i i
Crystal Ball—Spreadsheet Add-in Model

(Decisioneering, Inc.) [4,19] . .. ...... ...
RI$K—Cost Risk Model (Tecolote Research) [7]. . .

Appendix B: Parameter computations involving the product
oftworandomwvariables . . . . . ... ... ... .. ...

References. . . . . . v v v v v v e e e e e e et e e e e e

Distributionlist . . . . . . . . . . . . o ot e




Introduction and summary

The Naval Center for Cost Analysis (NCA) is a major contributor to
the cost analyses of all major Department of the Navy acquisition pro-
grams. Those analyses are submitted to the OSD Cost Analysis
Improvement Group (CAIG) for review. The quality and defensibility
of the estimates are crucial to a program’s receipt of approval to pro-
ceed beyond each acquisition milestone.

Present Department of Defense (DOD) directives require that the
uncertainty associated with the cost estimates be quantified and dis-
played for the CAIG review. Accordingly, NCA has developed and is
now using a set of statistical procedures, which have been embedded
into an electronic spreadsheet package, for assessing uncertainty in
the estimates. Nevertheless, because there is an extensive literature
on the treatment of uncertainty in cost estimates, and because several
uncertainty software packages are now available—both from com-
mercial sources and from various DOD organizations—NCA asked
CNA to conduct a study with the objective of evaluating the proce-
dures and software that it now employs. This is the final report of that
study.

We began with a brief literature search aimed at (1) obtaining a per-
spective on the state of the art in this area, and (2) becoming
acquainted with the capabilities of the software packages that appear
to be in common use. Appendix A contains a report of the search. We
followed that with a briefing to NCA. At the conclusion of the brief-
ing, it was mutually agreed that we would explore two analytical issues
bearing on the assessment of cost uncertainty, and that we would fur-
ther evaluate a specified subset of the packages. The subset included
the package presently in use at NCA.

The analytical issues were (1) the nature and proper treatment of cor-
relation among cost elements, and (2) the types of probability distri-
butions that best characterize uncertainty in cost estimates under




different circumstances. A third issue, choosing measures of variabil-
ity (dispersion) for use in the distributions, arose in the course of the
work and is also addressed in this document. The packages selected
were:

e RI$K—This software was developed by Tecolote Research, Inc.,,
for inclusion in the Automated Cost Estimator Integrated Tools
(ACE-IT), a system developed by joint funding from the Army
and Air Force. RI$K also operates in a standalone mode.

e Crystal Ball—This commercial package was developed by, and
-is licensed by, Decisioneering, Inc.

~® NCAP—We use this title to refer to the package developed for
use within NCA by Richard L. Coleman, Captain, USN (Ret.).

A second commercial package, @RISK, was originally included in the
subset, but after further review of its documentation and conversa-
tions with its developer, Palisade Corp., we decided that because of its
close similarity to Crystal Ball, evaluation of only the latter would
meet the needs of the study.

Our principal findings and conclusions may be summarized as fol-
lows:

® Correlations between cost elements are important; they should
not be ignored. When the source of the correlation is a direct
linkage between a driver cost and a dependent one, the corre-
lation can be adequately reflected by any of several methods.
When the linkages between two or more costs cannot be made
explicit, or whether such linkages exist at all, is a2 matter of con-
siderable controversy. Some analysts reject outright the use of
subjective measures of correlation; others strongly encourage
it. A middle ground is that sensitivity analysis can inform the
debate in any particular case.

® When cost estimates are generated by linear (log-linear) regres-
sion equations, and the standard assumption is made that the
error term is normal (lognormal), we believe the normal (log-
normal) distribution to be appropriate forms for characteriz-
ing the uncertainty associated with the estimates, given that




certain adjustments are made relating to the ¢ distribution. In
those same cases, we also believe that the prediction error is the
correct measure of variability (dispersion) because it incorpo-
rates all sources of uncertainty inherent in the regression. In
many other cases, where the estimates are generated by meth-
ods other than regression, both argument and evidence sup-
port the use of right-skewed distributions (e.g., lognormal,
triangular, or beta).

¢ The RI$K software package, which requires no electronic
spreadsheet, has many attractive features and is continually
being improved. Its user's guide also provides a thorough tuto-
rial on cost uncertainty analysis. NCA has immediate access to
RI$K, and we think analysts can profit from its use and its doc-
umentation.

e Crystal Ball is our preference as a spreadsheet overlay. It is well
documented, powerful, flexible, and easy to use, and it facili-
tates documentation of an uncertainty analysis. It is relatively
inexpensive, but nonetheless it must be purchased.

The report begins with a discussion of introductory analytical issues.
We then focus on the software packages that we evaluated. Additional
analytical questions are addressed in connection with those
evaluations.



Analytical preliminaries

A note on concept and terminology

Before proceeding with a discussion of analytics, we consider it
important to elaborate on the concept of cost uncertainty and to com-
ment on a question of terminology. Virtually without exception, cost
estimates take the form of point estimates—“Our estimate is that the
cost of Engineering and Manufacturing Development (EMD) will be
$325.4 million (FY 1995 dollars).” Unfortunately, the one thing
known with complete certainty about such a statement is that it will
prove to be wrong. Cost estimation is in no sense an exact science. A
far more realistic and useful perspective is to think of the point esti-
mate as simply one outcome in a range of possible outcomes. Many
factors contribute to the width of such a range, and to the relative
likelihood that the final outcome (cost) will fall within various por-
tions of the range. The task of cost uncertainty analysis is to quantify
those ranges and relative likelihoods. In short, it becomes an exercise
in the application of probability theory and methods to (1) empirical
data bases, and (2) information specific to the program for which the
estimates are being developed. |

The issue in terminology has to do with the distinction between risk
and uncertainty What makes this an issue is that those terms are used
inconsistently—and sometimes interchangeably—in the professional
literature, in documentation accompanying software packages, and
in various government publications. At the expense of some oversim-
plification, there appear to be three positions on the matter. The first
is that a program’s costs are influenced by several (perhaps very dif-
ferent) sources of uncertainty, and the process of quantifying the
effects of those influences through probabilistic modeling is called
risk analysis. A second view is that risk has to do with the cost impact
of potential variability in a program’s schedule or its design and tech-
nical characteristics, whereas uncertainty arises from inherent



limitations in the data and methods available to the cost analyst. A
third interpretation is that the two terms are synonymous. None of
these positions seem unreasonable to us. Because NCA subscribes in
general to the second, we have chosen to do likewise. We do note,
however, that most of the available software packages that support this
kind of analysis have the term 7isk in their titles.

A simple example of cost uncertainty analysis

To set the stage for the subsequent discussion, we provide the follow-
ing highly simplified example of cost uncertainty analysis. One pur-
pose of the example is to highlight the role of probability
distributions and Monte Carlo simulations, as well as the effects of
interdependence (correlation) among cost elements. Another is to
lay the statistical groundwork for the discussion that follows.

Consider a work breakdown structure (WBS) that consists of only two
cost elements: hardware (H)and support (S). The sum of the two equals
total cost (TC). Suppose we had reason to believe that the uncertainty
associated with each element could be characterized by normal proba-
bility distributions having parameter values as follows:

Table 1. Hypothetical parameter values

Element Mean (p) Std. deviation (o)
Hardware 100 20
Support 50 10

We are ultimately interested in the parameter values and distribution
of total cost. From the definition of sums of random variables, we
know the following:

Mean (TC) = Py = Bythg = 100+50 = 150

- 2., 2 12 12
Standard deviation (TC) = 6, = (oy+og+ 2chcs) = (400 + 100 + 400p)
where p is the correlation between hardware and support, and pc 6

is the covariance between H and S. Because by definition, -1<p<1,
that parameter has a very important influence on the size of 6, and




thus on the uncertainty associated with total cost. At the extremes,
6 ¢ could be as low as 10 or as high as 30. We are therefore unable to
proceed with the uncertainty analysis without dealing in some fashion
with the correlation between the two cost elements. In actual prac-
tice, of course, the treatment of correlation between any two cost ele-
ments would depend on both the nature of the elements and the
particulars of the program for which the estimates are being devel-
oped. For the expository purposes of this section, we consider four
possibilities. Later in the paper, we discuss another two.

The simplest thing to do is to assume that the two elements vary inde-
pendently, i.e., p = 0. Because components of support costs frequently
have direct ties to hardware costs, that assumption hardly seems plausi-
ble in this example. In general, however, it may be quite reasonable to
posit that two or more cost elements are uncorrelated. Maintaining for
a moment the assumption of independence, there are two ways of pro-
ceeding from this point. One is the Monte Carlo approach. A fairly
large number (1,000 or more) of random drawings would be taken
from the postulated hardware and support distributions, and the two
sets would be added—starting with the first pair of drawings and
ending with the last—to form the distribution of total cost. The mean,
standard deviation, and percentiles of the cumulative distribution
would be computed, making possible statements such as, “We’re 90
percent confident that total cost will not exceed $410 million.” This
would then complete the uncertainty analysis. Alternatively, because H
and Sare both normally distributed, we would be very safe in assuming
TCto also be normal. We could compute the mean and standard devi-
ation of that distribution as shown above, and by referring to a table of
standard normal values, calculate percentiles without resorting to sim-
ulation. This approach is typically called analytic or heuristic. When
there are several different forms and shapes of probability distributions
involved in an uncertainty analysis, Monte Carlo simulation is generally
thought to be preferable. Nevertheless, the alternative approach is
much simpler to execute and in many cases provides results that are
extremely close to those generated by the simulation.!

1. Theauthors of [1] describe experimental evidence showing that heuris-
tic methods, with total cost assumed to be normal, provide excellent
approximations to the simulated distributions. Those results are fairly
robust across numbers of cost elements, degrees of skewness in the cost
element distributions, and degrees of correlation among elements.



A second possibility is that support costs are being estimated as a fixed
fraction (factor) of hardware costs. (The numbers in table 1 are con-
sistent with a factor value of 0.5.) In that case, with S being simply a
linear transformation of H, p is identically equal to 1.0. As with the
preceding case, the total cost distribution could be obtained either by
simulation or heuristically. For the former, a large number of random
drawings would be taken from the hardware distribution, and then
each value in the set would be multiplied by 0.5 to obtain the distri-
bution of S. The two sets would be added as before to generate the dis-
tribution of total cost. Correlation of 1.0 between Hand Sis therefore
built into those two variables. For the heuristic approach, parameters
of TC could be calculated directly and the remainder of the process
carried out as described above.

A third case is where support costs are estimated as a fraction of hard-
ware costs, but there is uncertainty as to the magninide of the factor.
What is typically done in such cases is to treat the factor as a random
variable, and to specify a distribution form and parameter values for
it. The consequences are that:

e The standard deviation of support costs will increase from its
previous value because S now reflects the combined variability
of Hand the factor, and

e The correlation between Hand Swill decline from its previous
value of 1.0 because the interdependence of the two is no

longer exact.

It is possible to deduce analytically the new value of o and the value
of the correlation coefficient. Those computations are shown in
appendix B. The two parameters may also be obtained by simulation.
In table 2, where results of these three approaches are compared, the
variable factor in the third case was assumed to be uniformly distrib-
uted over the interval [0.85, 0.65]. All results in the table were
obtained analytically.




Table 2. Comparison of alternative approaches

Std. deviation - Correlation Std. deviation - Total cost at

Support costs support coefficient total cost 90% confidence
independent of 10.0 0.00 224 179
hardware _
Fixed fraction of 10.0 1.00 30.0 188
hardware
Random fraction 13.3 0.75 31.3 190
of hardware:
U(0.35, 0.65)

The fourth case leads into what is probably the most controversial
area of cost uncertainty analysis. In the context of the present exam-
ple, the situation would be that hardware and support costs cannotbe
linked by any factor relationship or other explicit mechanism, but
they nevertheless are believed to move together—to be correlated.
The underlying source of the correlation, while maybe not totally
obscure, simply does not lend itself to incorporation in a set of cost-
estimating equations. Examples that appear in the literature, and
which apply to different phases of life-cycle cost, have to do with
slipped schedules; failure to achieve technical breakthroughs;
unforeseen business-base conditions; and policy changes affecting
deployment, operations, and logistics support. Some analysts find this
totally reasonable and are quite ready to provide subjective measures,
if necessary, of the degree of interrelatedness among cost elements.
Those analysts necessarily require that their supporting software
makes provision for introducing correlation in this fashion. Other
analysts take one or the other of the following positions, or possibly a
combination of both:

® Subjective estimates of correlations have no place in a cost
uncertainty analysis. If an interrelationship exists and has not
been made explicit, the cost model is deficient.

® Schedules, technical breakthroughs, etc., constitute 7isk, not
cost uncertainty, and they should be dealt with in a separate anal-
ysis. Subjective estimates may be used in the separate risk
analysis.
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If forced to take a side in the controversy, we would probably side with
the subjectivists for four reasons. First, the basic argument is compel-
ling. Second, a great deal of any uncertainty analysis involves subjec-
tive judgment; there is nothing unique about subjective
quantifications of correlations. Third, software packages that permit
explicit introduction of correlation coefficients are more flexible
than those that do not. And finally, there is always the possibility of
conducting sensitivity analyses on the correlations. Such analyses may
reveal in any given situation that the issue is moot. |

We turn now to the three packages that we evaluated: RI$K, NCAPF,
and Crystal Ball, and to certain additional analytical issues.




RI$K

As mentioned earlier, RI$K is available as a tool in ACE-IT and can
also operate in a standalone mode. The following is a summary of
what we consider to be the principal features and strengths of RI$K:

Development. Unlike commercial packages such as Crystal Ball,
which are designed for application in any field of science and
engineering, RI$K was developed by a group of experienced
cost analysts and statisticians for use by other cost analysts. It
includes various options and defaults based on analysis of
empirical cost and programmatic data.

Documentation. The user’s guide accompanying RI$K accom-
plishes two objectives: (1) it makes the software easy to use, and
(2) it serves as a thorough tutorial on conducting cost uncer-
tainty (risk) analysis. ‘

Electronic spreadsheet. Many of the packages we reviewed can
operate only as overlays to the standard spreadsheets, e.g.,
Lotus 1-2-3 or Excel. RI$K, on the other hand, is self<contained;
it comes with what is essentially its own sprea\dsheet.2

Probability distributions. RI$K accommodates five forms of prob-
ability distributions: normal, lognormal, triangular, beta, and
uniform. Something of an ad hoc procedure can be applied in
using the normal distribution when a f distribution is techni-
cally more appropriate.

Correlation. Provision is made, although with some limitations,
for explicit introduction of measures of correlation among cost
elements. Users of the package are encouraged, however, to

2. A further explanation of this statement is that each of the RI$K work-
screens, which are discussed later, is in fact a subset of columns from a
single spreadsheet.

11
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think of (and to formulate) such measures as subjective indica-
tors of the strength and direction of “group associations” rather
than as strict product-moment correlation coefficients.

® Method. RI$K offers a choice between Monte Carlo simulation
and a closed-form analytic method for generating aggregate
distributions. If the latter is selected, the software assumes that
the desired distribution can be adequately described by a beta
curve. If there is interest in the extreme tails of the distribution,
the Monte Carlo method is recommended—with a very large
number of random drawings. (A user can specify the number

of drawings desired.)

® OQutput. Tabular output includes, for each WBS element, basic
statistics (means, medians, standard deviations, etc.), confi-
dence (percentile) levels, correlation tables, and user inputs. In
addition, histograms of the derived probability distributions
and continuous graphs of cumulative distributions are available
for any WBS elements desired.

The preceding features were characterized as strengths of the RI$K
software. There are certain other features that, at least in our opinion,
constitute weaknesses. Before describing those, we should note that
RI$K, like its parent system, is continually evolving. Discussions with
its support contractor, Tecolote Research, Inc., revealed that work is
either under way or could easily be carried out to remedy the major

weaknesses.

Although RI$K permits one cost element to be estimated as a fraction
(factor) of another, and although a probability distribution can be
placed on the factor (with moderate restrictions), the software is not
designed for a user to introduce more complicated linkage equa-
tions. For analysts who subscribe to the philosophy that the only legit-
imate correlations are those that arise from explicit linkages of cost
elements, this is a near fatal flaw in RI$K. Our own view, which we will
justify later in the paper, is that with the proper choice of variability
(dispersion) measures, and by occasionally resorting to off-line simu-
lation or “tricking” the software into accepting a more complicated
equation, this weakness in the model’s present configuration can be




overcome. And as suggested above, effort is under way to incorporate
more general solutions. ’

Other than the limitations imposed by the absence of a ¢ distribution
and by the restrictions placed on factor distributions, the remaining
feature that we find inhibiting is the way RI$K handles correlations or
“group associations.” Imagine that WBS element E, drives elements
E, and E;, but at different strengths of association. Although not
highly likely, it is entirely conceivable that an analyst knows the three
pair-wise correlations and wishes to provide them as input to the anal-
ysis. RI$K prohibits that in effect by requiring, for purposes of supply-
ing correlation measures, that each group of elements be mutually
exclusive of every other group. Thus if E, and E; were in a group with
E,, their own correlation could not be specified in a second group,
nor could they be in a group with other elements. We are quite pre-
pared to believe that this could make little or no difference in many
real uncertainty analyses, but it is nonetheless a limitation that is not
encountered in other packages such as Crystal Ball.

Workscreens and further analytical issues

RI$K is structured around a series of five workscreens. As noted in
table 3, which provides an overview of the screens and the role played
by each, only two of the five are absolutely essential in every analysis.
We will provide further observations on the workscreens, with some
of those constituting the springboard for discussion of additional and
important analytical issues.

As for the Initial Estimate screen, another convenient feature of RI§K
is that the WBS hierarchy—the successive levels of aggregation—is
defined simply by each element’s order of entry and level of indenta-
tion. There is no requirement to write summation expressions nor to
document the location (in a spreadsheet, for instance) of any vari-
ables. Concerning documentation in general, the combination of
printed copies of the workscreens and the various forms of output
constitute complete documentation of the uncertainty analysis—at
least from the point of view of reproducibility.3 An analyst would

3. Presumably, the baseline cost estimate would be documented elsewhere.

13



probably want to provide additional documentation on the choice of
probability distributions and the origins of measures of dispersion
and group associations (if applicable).

Table 3. RI$K workscreens

Workscreen

Required or optional

Inputs

Comments

Initial estimate

Estimating risk

Other risk

Factor specifications

Groupings

14

Required

WBS, baseline cost esti-
mate, and types of estima-
tion method used

Sequence of entry and
level of indenture
convey WBS hierarchy

Required Forms of probability distri- Inputs are supplied for
butions and measures of  each element that is not
dispersion and skewness  the sum of a set of sub-

ordinate elements

Optional Characterization of sched- All inputs are subjective

ule, technical, and configu-
ration risk

Optional (req'd if using  Identification of driver ele- Probability distributions

factors) ments for those costs esti- may be specified for fac-
mated by factors tors
Optional Identification of group One element may be

designated as dominant
in a group

associations and strengths
among WBS elements

Inputs to the Estimating Risk screen specify the type of probability dis-
tribution chosen for each element that requires one, together with
measures of dispersion and skewness. For some types of distributions,
the dispersion measures are quantitative; for others, they are subjec-
tive. All measures of skewness are subjective. These observations
prompt the following discussion of selecting distribution forms and
measures of dispersion.

With regard to choosing distribution forms, a few things seem rela-
tively clear. Statistical regression analysis plays a central role in (1)
developing baseline cost estimates, and (2) providing a basis for
quantifying the uncertainty associated with the estimates. If a strictly
linear regression equation serves as the mechanism for estimating a




particular cost, conditional on a set of values for the equation’s pre-
dictor or driver variables, then the uncertainty associated with that
estimate (prediction) should ideally be characterized by a ¢ distribu-
tion. If that distribution is not available in the package, the normal
distribution should be used with adjustments as noted in a subse-
quent paragraph.4 The reason for this choice is that the regression
equation arises from a model that assumes the presence of a normally
distributed random error term. (Because the variance of the error
term is unknown and must be estimated, the relevant distribution,
including the distribution of the prediction, becomes the ¢ rather
than the normal.) Regression equations that are linear in the loga-
rithms of their variables are also widely used in cost analysis. There
the underlying assumption is that the error term is lognormally dis-
tributed, and for uncertainty purposes, the lognormal seems the cor-
rect choice—again with certain adjustments that pertain to the ¢
distribution.

There are two other attractive features of the lognormal, whether in
connection with a log-linear regression or as a characterization of
uncertainty for an estimate developed by some other method. One

4. The importance of the distinction between ¢ and normal distributions
is one of sample size or, more precisely, degrees of freedom (d.f.), in the
database from which the regression equation was developed. At 30 d.f,,
the tand the normal are essentially equivalent at one decimal place. As
the number of degrees of freedom become quite large, the  converges
to the normal.

5. When alognormal distribution is specified, RI}K interprets the baseline
cost as a median. Because of the distribution’s right-skewness, the
median is lower than the mean. The package employs a procedure for
increasing the baseline to a mean cost for the element, because the sum
of the means of the cost elements is what constitutes the mean of total
cost. We have only a minor objection to this, in the case where a lognor-
mal is specified because a log-linear regression is being used. The base-
line estimate produced by the regression, while appearing to be a
median, is in fact an upwardly biased estimate of the median. See [2],
appendix A. The magnitude of the bias could be small or large, depend-
ing on a variety of factors. It may well be that interpreting the baseline
as a2 mean would prove more accurate in the long run, but there is cer-
tainly no way of demonstrating that.

15
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feature is its rightskewness and the other is that the lognormal pre-
cludes a cost variable from becoming negative. There is a wealth of
experience indicating that when costs are under-predicted, the mag-
nitude of the errors is considerably greater than when they are over-
predicted. Right-skewness in a distribution provides a means of cap- -
turing that phenomenon. One also finds evidence of right-skewness
in [3] with respect to costs that are usually estimated by factor rela-
tionships. Examples are engineering change orders and initial spares.

A situation that involves both right-skewness and negative values is
one in which, for whatever reason, the measure of dispersion is quite
large relative to the baseline cost estimate. By “quite large” we mean
greater than 50 percent. Choice of a normal distribution in such cases
seems particularly unwise because some nontrivial fraction of the cost
values would be negative. Either a lognormal or a rightskewed beta
or triangular distribution might be more sensible.® Appendix A refer-
ences the favorable discussion of beta and triangular distributions in
the literature, but also mentions the problems associated with accu-
rately specifying the finite upper and lower values of those distribu-
tions. We note that RI$K requires, as input, that the “spread” of the
triangular and beta be described only as low, medium, or high, and
that skewness be described simply as right, left, or center. The pack-
age’s numerical default values are documented in its user’s guide.

We turn now to the issue of choosing measures of dispersion. Our dis-
cussion is confined to those cases where regression equations are
used to generate the baseline cost estimate. Some explanation of
figure 1, where the measure is depicted, will facilitate what follows.

The figure assumes the existence of a database from which a simple
linear regression equation—the upwardly sloping straight line—has
been developed. The cost driver is X, having a mean of X in the sam-
ple. The value of the driver for purposes of prediction is X,. The point
estimate, or prediction, is the point on the regression line corre-
sponding to X,. The hyperbolic curves represent the width of the pre-
diction interval at a specified level of confidence. The interval is

6. When either a triangular or beta distribution is specified, RI$K inter-
prets the baseline cost as a modal value.




smallest at the sample mean of the driver, and becomes progressively
larger as X, moves away from the mean in either direction. It is com-
puted by first multiplying the prediction error (PE) by the appropri-
ate value of ¢, given the number of degrees of freedom and the
desired confidence level, and then adding that result to, and subtract-
ing it from, the point estimate. (We note that the RI$K user’s guide
refers to what we call the prediction error as the prediction inferval.
We consider that an unfortunate choice of terminology because the
prediction interval is defined as we define it here in all statistical and
econometric literature with which we are familiar.)

Figure 1. Prediction intervals and prediction errors

Prediction error:

Prediction S.E.E. ‘/1 +1/n+(xg - 2)2 /% (x - 52)2
Interval

. Cost

Driver

)
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The PE captures all sources of uncertainty embedded in the predic-
tion, except for any uncertainty associated with the value of X,. Those

sources arc:

® Variance of the estimate of the intercept parameter

e Variance of the estimate of the slope parameter

¢ Covariance between the intercept and slope estimates
® Variance of the model’s random error term.

IfRI$K (or any other package) provided a tdistribution, the PE would
be the correct measure of dispersion for the baseline (predicted)
cost. It is directly analogous to a standard deviation. When only a
normal distribution is available, the PE must be adjusted upward to
reflect the fact that the tdistribution has thicker tails than the normal.
An example of such an adjustment is provided later in the discussion.

Two qualifying remarks are in order with regard to the preceding few
paragraphs. First, if the regression is log-linear, the same process
applies. A specialized feature of RI$K, however, is that when a lognor-
mal distribution is specified, the baseline cost is interpreted as being
in dollars, but the dispersion measure is expected to be in decimal
form, i.e., unchanged from the value that was generated in log space.
Second, even in the case of a single driver variable in a regression
equation, and certainly with multiple drivers, the analyst may not
have all the information needed to compute prediction errors for
input to the analysis.7 This is not a serious problem with a single
driver, and the RI$K user’s guide provides a table of approximate

‘adjustment factors, but it can definitely be a problem with multiple

predictor variables. The documentation associated with virtually any
regression equation will include the S.E.E. About the best that can be
done is to make a subjective upward adjustment to that value, taking
into consideration the degrees of freedom and the extent to which
the variables are perceived (if not actually known) to deviate from
their sample means.

We’ve made several references to, and provided examples of, simple
factor relationships where one cost variable drives another. In

7. This limitation was first noted by Vern Reisenleiter of NCA.




addition, a relationship between two cost variables frequently arises
from a linear regression analysis. Thus the prediction of the depen-
dent cost (G)), rather than being conditioned on a given X,, becomes
a function of a driver (C,)that is itself subject to uncertainty. The
approach we recommend for simulating G, is as follows. Letting b,
and b, represent the estimates of the intercept and slope parameters,
respectively, and PE, the adjusted prediction error, the analyst should
form the equation '

C = by+ b C +E ,

where E is the random variable capturing the uncertainty associated
with the regression. Then take random drawings from the distribu-
tion of C, and multiply each by ;. Continue by taking random draw-
ings from E, whose mean is zero and measure of dispersion PE,. Each
. random drawing of E is added to the corresponding value of 4,C,,
along with & C;will have the same mean (except for sampling error)
as it would if C, were a constant, and its variability will reflect the
uncertainty from the regression and the uncertainty associated with
C.. Although RI$K is not designed to accept equations such as this, it
can be “tricked” into doing so by setting up three subelements of cost
under G, each of which represents one component of the above equa-
tion.8 Of course, the simulation could be done offline, and the result-
ant standard deviation of C,and correlation between C, and (, could
be input directly into RI$K without further complication.

The following example will tie much of the preceding discussion
together. It is taken from a recent NCA cost analysis. The dependent
cost is engineering design, and the driver is total EMD hardware cost.
The regression equation, in millions of FY 1993 dollars, was

C, = 0016 +084C, .

8. The trickery turns out to be a little more complicated than described
above. With the mean of Eequal to zero, half of its values will be negative.
Because RI$K truncates negative values in a distribution, the user receives
an error message saying that too many values are being truncated. This
can be overcome by arbitrarily choosing a mean of E that is high enough
to avoid negative values, and then subtracting that mean from the con-
stant by. RI$K will accept negative values if they are constants.
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The standard error of estimate (S.E.E.) was 8.8, and there were
3 degrees of freedom. To obtain the prediction error, we multiply the
S.E.E. by the value of the square-root term shown in figure 1 (1.13 in
this case). The result was 9.9. We then adjust that upward in order to
shift from the ¢ to the normal distribution. The adjustment factor is
unique to a given confidence level and degrees of freedom. For illus-
tration here, we chose 90-percent cumulative confidence, meaning
10 percent of the distribution is to the right of that point. The factor
is then computed as the ratio of t;, for 3 d.f. (1.638), to the value of
a standard normal variate with the same area to the right (1.282). The
resulting ratio was 1.28. Thus the adjusted PE was 1.28(9.9) = 12.7.

With C, held constant at its mean of 28.0, the baseline estimate for C,
was

Cy = -0.016+0.84(28.00 = 23.5 .

The 90-percent cumulative confidence for that cost, determined ana-
lytically, was 39.8. The computation is

23.5+1.28%(12.7) = 39.8 .

This reflects only the uncertainty inherent in the regression. (Note
that this number is nearly 70 percent larger than the baseline esti-
mate. Considerable uncertainty is associated with this cost, owing to a
relatively large S.E.E. and a very small sample size.) When C, is
allowed to vary randomly in accordance with its (normal) distribu-
tion, the baseline value of C, is unaffected, and the combined mea-
sure of dispersion for C, (reflecting both regression and driver
uncertainty) increased to only 13.0, a value obtained by simulation.
The corresponding cost at 90-percent confidence was 40.2, just
slightly larger than before. The closeness of the two sets of results is
attributable to the minimal uncertainty (low dispersion measure)
associated with C,. That, of course, is simply a feature of the particular
example we chose, and it definitely need not be the case in general.

Returning to the discussion of workscreens, the Other Risk screen
provides the user a means for incorporating additional uncertainty if
the program in question is thought to face schedule and technical
requirements that are unusually difficult in comparison with




programs of similar types. As noted in table 3, all inputs are subjective.
These increases in uncertainty may be thought of as penally factors.
RI$K provides default penalty factors for two system types, hardware
and software.

The Factor Specification workscreen is used to designate one cost ele-
ment as a simple factor of another.? Naturally, if there are no factor
relationships, this screen is not required. When the estimation method
for an element is specified as factor in the Initial Estimate screen, and
when that element is linked to a driver in the Factor Specification
screen, RI$K calculates the value of the factor by computing the ratio
of the mean of the dependent element to the mean of the driver. As
noted earlier, a limited number of probability distributions can be
placed on the factor when there is uncertainty as to its magnitude.

The final input workscreen is Groupings. This is the vehicle by which
an analyst can identify subsets of elements that move together, either
positively or negatively, and the strengths of their relationships. It is
especially important if certain correlations have been determined off-
line either analytically or by simulation. However, we have pointed
out what we consider to be limitations in the way RI$K accepts and
processes this information.

Having provided all inputs required, the final step is to call for the
Calculation routine. As noted earlier, a user may choose between (or
examine both) an analytic solution and a Monte Carlo simulation. If
the simulation is selected, the user may specify the number of itera-
tions (random drawings) desired. Both tabular and graphical output
are available. Figure 2 is an example of the graphs of a probability dis-
tribution and cumulative distribution of total cost in a hypothetical
uncertainty analysis. '

9. Strictly speaking, factors can be applied without use of the Factor Spec-
ification screen. Recalling an example from the section of the paper on
analytical preliminaries, where support cost was a fixed fraction of hard-
ware cost, the only inputs that RI$K requires for support costs are (1) its
mean, dispersion measure, and distribution form, all of which can be
easily determined from knowledge of the driver element, and (2) the
information (via the Groupings workscreen) that hardware and support
are correlated at exactly 1.0.
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Crystal Ball and NCAP

Crystal Ball is a software package that supplements the capabilities of
spreadsheets such as Excel and Lotus 1-2-3. It permits the user to
define random variables in the spreadsheet and provides a limited
Monte Carlo capability. This section provides a detailed description
and evaluation of Crystal Ball by comparing its features with those of
the cost uncertainty package in current use at the Naval Center for
Cost Analysis—the package we refer to simply as NCAP.

NCAP was written in spreadsheet form using Lotus 1-2-3, version 3.1.
Lotus macros perform the generation of random numbers, the
Monte Carlo simulations, and the data analysis. We obtained it on a
diskette along with instructions for its operation.

To provide a basis for comparison, we examined an actual cost uncer-
tainty analysis using each of the packages. The original uncertainty
analysis was carried out in connection with the Cooperative Engage-
ment Capability (CEC) cost analysis performed by analysts at the cost
center. We used a CNA personal computer (Gateway 2000, model
P4D-33 with 486 processor) in examining each package. We first
typed the data from the CEC analysis into a Lotus (version 3.1)
spreadsheet. Then, after loading the Crystal Ball software into an
Excel (version 5.0) spreadsheet, we copied the Lotus data into the
Excel spreadsheet. (Our use of Excel should not be taken as an
endorsement of that software over Lotus. Informally, we understand
that the latest models of each product are similar in many respects.)

Detailed comparison of Crystal Ball and NCAP

This section compares the two packages with respect to (1) documen-
tation, (2) running time, (3) size limitations, (4) number of variables
analyzed, (5) ability to handle correlations, and (6) probability distri-
butions of random variables.
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Documentation

NCAP is almost completely undocumented. Its operation requires the .
uploading of information from a diskette or other computer file, and

coaching from a knowledgeable user. Crystal Ball is a commercial product

with a user's manual [4] and the usual technical support by telephone.

Another aspect of documentation is the ability to document and
archive any given analysis. This involves documenting the input data,
formulas used, and other facets of the analysis. Table 4 is a Crystal Ball
output that provides a complete record of the CEC inputs, equations,
distribution forms, etc., on a single page—including notes adequate
to reproduce the results. NCAP would require storage of 2 diskette
along with a page or pages of other information.

Running time

For the Crystal Ball example in table 4, the running time for 1,000
Monte Carlo iterations is about 45 seconds. Two thousand iterations
require about 1 minute, 15 seconds. Informal estimates from NCAP
users suggest its corresponding run time is 7 or 8 minutes for 1,000
iterations. Part of the difference in run time may be attributable to
the use of an older version (3.1) of Lotus with NCAP, and the most
recentversion (5.0) of Excel with Crystal Ball. Another part of the dif-
ference may be attributable to Crystal Ball’s being written in Turbo
Pascal, whereas NCAP is in Lotus macro language.

Size limitations

NCAP is size-limited to one spreadsheet page, about 25 usable lines
for instructions. Analyses requiring more than 25 lines must be
broken into parts that can be run sequentially. Crystal Ball imposes no
limitation on the number of lines.

Number of variables analyzed

NCAP provides a complete analysis on at most two variables, although
partial information (sample means, standard deviations, and coeffi-
cients of variation) is provided for all variables. Crystal Ball permits as
many variables as desired to be selected for analysis. In some respects,
this is a trifling difference because the user is probably interested in
only one or two variables. However, figure 3 illustrates how this fea-
ture might be of interest to the analyst.
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Figure 3 provides a breakdown of Total EMD cost, a primary output
variable in the CEC example. This variable is the sum of the six vari-
ables listed in the left column, and the figure displays the contribu-
tion of each of the six variables to the total variance of the Total EMD
cost. This variance decomposition is similar in spirit to that of an anal-
ysis of variance (ANOVA) table. For example, figure 3 shows that over
60 percent of the variability in Total EMD Cost is due to the single
input “EMD Cont. Costs.” Also, the bottom three inputs (E2C Inst,
CASS, and Ship Inst) contribute less than one percent to the variabil-
ity of the Total EMD Cost. These latter three variables could probably
be entered as simple constants in the spreadsheet without changing
the results of the analysis. The user might then choose one of the six
input variables for a further variance breakdown. Such analysis may
provide an increased understanding of the underlying cost model.

Ability to handle correlations

In practice, cost variables are usually correlated due to some direct
relationship between the variables or to underlying factors that are
common to both. NCAP can create correlation between cost variables
only by simulating a direct relationship or common factor as an
explicit piece in the spreadsheet. A Crystal Ball model can also gener-
ate correlation between cost variables in this way, but in addition, the
user may simply specify two variables as being correlated with a
desired correlation coefficient, and Crystal Ball will simulate these
correlated random variables without reference to the spreadsheet.

Usually, correlation is measured using the standard statistical “corre-
lation coefficient.” It is well known [5] that it may be difficult to gen-
erate random numbers having a desired joint distribution with a
desired correlation matrix; in fact, it may be impossible unless there
are appropriate bounds on the elements in the correlation matrix.
Crystal Ball avoids some of these problems by using “rank correlation”
techniques [6] which provide a rapid, nonparametric approach with
a slight loss of efficiency. If the user specifies correlation values that
are impossible (with the given marginal distributions), then Crystal
Ball approximates the correlation values as closely as possible and

27




prints out a warning message.lo (The authors have not tested this fea-
ture.) The reader is reminded of the earlier discussion concerning
(1) the controversy associated with use of subjective measures of cor-
relation, and (2) the potential value of “what if” or sensitivity analysis
in the area.

Distributions of random variables

The NCAP software provides the user with a choice of four distribu-
tions (normal, ¢, uniform, and custom). Modification of distribution
parameters is by keyboard entry only. Crystal Ball provides 16 distri-
butions. Modification of parameters is either by keyboard or graphi-
cally—using the mouse.

There is little agreement in the cost analysis literature as to what dis-
tributions should be used or how parameters should be selected.
However, regardless of dispute, NCAP appears to be too limited in its
offering of distributions. As noted previously, when the mean of a
variable is close to zero or the standard distribution is similar in size
to the mean, then a normal or frandom variable will take on negative
values a nontrivial fraction of the time. In a cost analysis context, neg-
ative costs are usually unrealistic, and it is desirable to have readily
available a log-normal or some other distribution to accommodate

these variables.

Concluding remarks

28

The foregoing comparison establishes a reasonably strong basis for
selecting Crystal Ball over NCAP as a spreadsheet overlay. However,
one additional point should not go unmentioned. NCAP is presently
available to, and in fact is being used by, the cost center. Crystal Ball,
while relatively inexpensive, must nevertheless be acquired through a
formal procurement action.

10. When two random variables are related through a joint probability dis-
tribution, the marginal distribution of each is simply each variable’s
univariate distribution.




Appendix A

Appendix A: Literature review

Introduction

This appendix reports on the results of a brief literature search in the
area of cost-risk analysis. The emphasis of the search was primarily to
obtain a perspective on the state of the art in this area. A secondary
purpose was to become acquainted with the capabilities of the cost-
risk analysis models that appear to be in common use.

As a result of the search, several themes emerged:

® There is no generally accepted definition of “risk” in cost-risk
analysis.

® No single methodology emerges as being “best.”

— Monte Carlo methodology is considered to be one of the
better approaches but is not a panacea.

— Decision analysis is often touted as being the theoretically
best approach, but the details of its practical use do not
appear to be well known in the analysis community.

® There is general agreement that cost estimates must include
information about their associated probability distributions. A
variety of distributions are in common use, with the beta and
triangular being the most common. There is no agreement on
the best way to estimate parameters for these distributions.

® There is general agreement that correlations between costs
must be considered in estimating total cost. There is no general
agreement about how to obtain estimates of such correlations
or how to incorporate this information into the analysis.
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Discussion

Appendix A

e There is some feeling that a critical (and often overlooked)
part of performing a costrisk assessment is obtaining appropri-
ate input data.

Some frequently cited software packages or models are listed below.
Each is described later in the appendix, and several of the packages
are compared in [7].

e CLT Central Limit Theorem (USASSDC)

e FRISKEM Formal Risk Evaluation Methodology (Aerospace) -

¢ PACER Parametric Cost-Estimating Relationship Module
(DSMC)

@RISK Spreadsheet Add-in Model (Palisade)

Crystal Ball Spreadsheet Add-in Model (Decisioneering)

RI$K Cost Risk Model (Tecolote Research)

Definition of “risk”

30

The cost-analysis community seems to have no generally accepted def-
inition of “risk.” Some writers appear to regard risk and uncertainty
as synonymous, whereas others define risk rigidly in some statistical
framework—as in decision theory [8, 9, 10]. One sees terms such as
“cost,” “risk,” “cost risk,” “cost-estimating risk,” “project risk,” “sched-
ule risk,” and “technical risk” used rather informally.

The underlying theme that the literature conveys is that there is
always an implied “best estimate” and the associated “risk” is some
measure of the extent to which the actual result may overshoot the
“best estimate.” “Cost risk analysis” is the process of generating this
“best estimate” and associated “risk.” Traditionally, the “best estimate”
is most important and is calculated first, after which some estimate of
“risk” is made. ‘

The modern trend is to decry this split, and to argue that the uncer-
tainty in a cost estimate is as important, if not more so, than any point
estimate [9, 10]. All of the software packages examined in this litera-
ture search made some attempt to quantify cost uncertainty as well as
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provide a point estimate. Percentiles of the total cost distribution are
commonly used to help quantify cost uncertainty.

No methodology is “best”

The general approach to “cost risk analysis” seems to be a bottom-up
approach. The analyst attempts to obtain or generate cost estimates
for all of the individual cost elements, then sum these estimates into
a total cost estimate, from which a point estimate and associated risk
measures can be obtained. Each step gives rise to difficulties [8]. .

A simple approach is to obtain three estimates for each of the individ-
ual element costs: best case, worst case, best estimate. These are
summed over the individual elements to obtain these three estimates
for the total cost. The worst case estimate is obtained from the best
estimate by multiplying by some experience-based factor. This
approach has the advantage of giving rapid results, which may how-
ever be difficult to defend.

A more sophisticated approach is to obtain or generate distributional
information about each of the individual elements. These distribu-
tions are then combined to provide an estimate of the resulting total
cost distribution. The combining of these distributions is a major
problem with this approach. If the costs are independent (which they
never are), then the distributions can be combined via repeated con-
volutions. But this is hard to do in practice because of computational
difficulties. However, the means and variances of the individual cost
elements can be summed to provide estimates of the total cost mean
and variance. When individual element costs are correlated, this does
not affect the estimate of the total cost mean, but the variance com-
putation must include the correlation terms. Unfortunately, this gives
only the first two moments of the total cost distribution. Alternatively,
the individual element distributions can be combined via Monte
Carlo into a total cost distribution. This can involve lengthy computa-
tion and resulting sampling errors. Also, it can be difficult to generate
appropriately correlated Monte Carlo variates.

Some writers argue passionately that decision theory provides the
only justifiable framework for quantification of total cost and defini-
tion of associated risks [9, 10, 11]. However, the methodology does
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not appear to have filtered down from the classroom to the practitio-
ner in any generally accepted form as yet.

Probability distributions

The modern view is that each cost estimate must include information
about its probability distribution. When there are ample data, then
statistical and curve-fitting techniques exist for determining which
probability distribution provides a best fit. Atworst, an empirical dis-
tribution can be generated. But generally, such ample data do not
exist, and the analyst must make do with scraps of distributional infor-
mation, including expert judgment. There is a great deal of discus-
sion in the literature about the benefits of using the triangular and
beta distributions. Because of their finite upper and lower values and
modal behavior, they can be fitted using only the three estimates:
worst case, best case, and best estimate. There are some possible prob-
lems in finding the best fit, but the method is popular and is mecha-
nized in some of the computer models that were examined. Other
distributions are in common use, with no general agreement in the
analytic community about which distributions are best for what pur-
poses [8, 12]. Most of the models provide for automated fitting with
a variety of distributions.

Additional problems arise when expert judgment is the basis for esti-
mation of a probability distribution. It appears to be well established
that human beings are not very good at estimating probabilities, par-
ticularly tail probabilities, because of numerous biases that seem to be
“wired in.” Even well trained statisticians have these biases. Asa
result, the upper and lower tails in probability distributions are almost
always underestimated, and associated “risk” is almost always underes-
timated, no matter how it is defined [8].

When Bayesian methods are used, it may be necessary to encode sub-
jective probability distributions. This has been an area of intensive
research, and some authors feel that current methodology may be far
behind the state of the art [10].
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Correlations between costs

There is general agreement that correlations between costs must be
included in the analysis. There are two problems: How do you get the
correlation estimates, and how do you include them? There are few
examples of correlation estimates in the literature, but there is much
discussion of how certain processes should be correlated with other
processes. Including the correlation estimates in the analysis can be

-difficult when Monte Carlo methods are involved. It can also be diffi-

cult to simulate random numbers with precisely the right marginai
distributions and precisely the right correlations, except in a few spe-
cial cases. This appears to be an active area of current research [5,13
through 16].

Data collection and analysis

Many of the technical problems discussed above are exacerbated by
the difficulty of getting reliable data. Some authors feel that this is a
neglected area that is crucial [8]. Reference [17] illustrates the effort
that is needed to collect, organize, and sanitize large bodies of data.

Comparison of selected software packages

CLT—Central Limit Theorem (USASSDC) [7]

General approach: If the detailed cost elements are independent with
finite means and variances, then the sum of the means and the sum
of the variances are equal to the arithmetic mean and variance of the
total system cost. Also, the distribution of the total cost approaches

~ that of a normal distribution as the number of detailed cost elements

increases.

Implementation: Written in BASIC for the PC.

Built-in distributions: Beta, triangular, uniform, normal.
Strengths: Analytic model, fast-running.

Weaknesses: Does not allow correlation between cost elements. Not
compatible with any spreadsheet or work processor software.
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FRISKEM—Formal Risk Evaluation Methodology (Aerospace) [18]

General approach: For each WBS element, FRISKEM accepts low,
best, and high cost estimates, along with an interelement correlation
matrix. The model fits a triangular distribution of cost to each WBS
element and calculates the mean and variance of each triangular dis-
tribution. Using these with the correlation matrix, the mean and vari-
ance of the total cost distribution are obtained. These parameters
determine a lognormal distribution, from which costrisk measures
can be obtained. This model extends an earlier model FRISK.

Built-in distributions: Triangular, lognormal.
Implementation: Written in BASIC for the PC.

Strengths: Analytic model. Fast-running. Does allow correlation
between costs. Easy to learn.

Weaknesses: Uses only triangular distributions to fit the WBS cost ele-
ments. The total cost distribution is hardwired to be lognormal.

PACER—Parametric Cost-Estimating Relationship Module
(DSMQ) [7]

General approach: PACER is a “tool box” of standalone applications,
with four subsystems: Utility, Cost-Estimating Relationships, Operat-
ing, and Applications. The risk analysis function is a subroutine of the
Applications System and is based on the Central Limit Theorem. (See
CLT description below.)

Built-in distributions: Six precalculated beta distributions.
Implementation: Written in C for the PC.

Strengths: Analytic model. Fast-running. Compatible with some
spreadsheet and word processing software.

Weaknesses: Does not allow correlation between costs. Not easy to

learn.




Appendix A

@RISK—Spreadsheet Add-in Model (Palisade Corp.) [7]

General approach: @RISK is a simulation model that uses either
Monte Carlo or Latin Hypercube sampling.

Built-in distributions: Over 30 types of distributions.

Implementation: Can be added to either Excel or Lotus on PC or
Mac.

Strengths: Very flexible. Good tabular and statistical outputs. Cost ele-
ments may be correlated.

Weaknesses: The model assumes a sophisticated user. Slow execution
time.

Crystal Ball—Spreadsheet Add-in Model (Decisioneering, Inc.)

[4, 19]

General approach: Crystal Ball is a simulation model that uses either
Monte Carlo or Latin Hypercube sampling.

Built-in distributions: Sixteen types of distributions.

Implementation: Can be added to either Excel or Lotus on PC or
Mac.

Strengths: Very flexible. Good tabular and statistical outputs. Easy to
learn. Permits correlated cost elements.

- Weaknesses: Moderately slow execute time.

RI$K—Cost Risk Model (Tecolote Research) [7]

General approach: RI$K can be run either as a Monte Carlo simula-
tion model or as an analytic model. The analytic model assumes that
the total cost distribution can be modeled as beta.

Built-in distributions: Normal, lognormal, beta, triangular, uniform.
Implementation: Written in C for the PC (Windows compatible).

Strengths and weaknesses: See the section on RI$K in the main body
of the paper.
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Appendix B: Parameter computations involving
the product of two random variables

In the simple example of cost uncertainty analysis presented in the
main body of the paper, one case that was considered had support
cost (S) estimated as a factor of hardware cost (H), with the factor (F)
assumed to be a uniformly distributed random variable. Hence,
S = FH. Here we illustrate how the variance and standard deviation of
S, the correlation between S and H, and the standard deviation of
total cost (7C) may be computed analytically. We begin by reviewing
certain definitions and properties of random variables.

The mean, or expected value, of a random variable Xis denoted by
E(X) =p .
The variance of Xis given by

EX-p’=EX)-p’=06",

with the standard deviation being simply 6. For the product of two

independent random variables, X; and X, the mean, variance, and
covariance are defined as follows:

E(X,X,) = E(X)E(X) = W1,

E(X) E(X) ~i3h;

Var (X, X,) = E[X1X2-E(X1X2)]2

Cov(X,X%) = E(X,~1t) (%,-1y) = E(X%) —iyiy -

Note that, because X; and X, are independent, their covariance is

identically zero. If the variables were not independent,
E(X,X,) #1,U,, and the covariance would be either positive or
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negative. The standardized covariance (correlation) between any two
random variables, X;and X;, denoted by p,,, is given by
Py = Cov(X‘, X))/o,0, .

In the cost uncertainty example, the mean and standard deviation of

H, py and Oy, were assigned values of 100 and 20, respectively. It
therefore follows that

E(HD) = oo+ 3 = 10,400 .
The variable factor Fwas assumed to be independent of Hand uni-
formly distributed over the interval [0.35, 0.65]. For any uniform vari-

able U distributed over the interval [a, b], properties of relevance
here—as developed in, for example, [20, pp. 297-298]—are

EU) = (a+ B2
E(UD) = [(a+b)°-abl 3
o = (b-a)N12 .

Applying these results to the uniformly distributed factor Fwith
a = 0.35and b = 0.65, we obtain

E = 05, E(F) = 02575, oy = 0.0075 .

Given the above, and recalling that S = FH with Fand H assumed to
be independent, we may compute the following:

E(S) = EGFE) = E(DE(H) = g = 50
E(S) = E(FH)® = E(F)EH) = 2,678
o2 = E(S) —p5 = 178

o = (178) 7 = 1334 .
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The covariance of Hand §is given by

Cov(H,S) = E(HS) —Hyllg
= E(H'F) ~pighs

= E(H)E(P) - iy

= 200 .
The correlation between H and Sis therefore
Pys = Cov(H, Sloyos =075 .

Finally, as noted in the main téxt, the standard deviation of total cost
is given by

2 2 12 12
Orc = (Oy+Ost+2pyOpOs = (978) "~ = 3127 .

39




References

(1]

[2]

[3]

[4]
[5]

[6]

[71

[81

[9l

Air Force Institute of Technology Paper No. AU-AFIT/LA-TR-
94-1, An Investigation of the Accuracy of Heuristic Methods for Cost
Uncertainty Analysis, by Wendell P. Simpson and Kevin P.
Grans, Aug 1994

CNA Research Memorandum 93-228, A Study of the Predictive
Accuracy of Alternatively Estimated Statistical Cost Models, by
Henry L. Eskew and Kletus S. Lawler, Dec 1993

Naval Center for Cost Analysis, Standard Cost Factors Handbook,
Nov 1992

Decisioneering, Crystal Ball Version 3.0 User Manual, 1993

Institute for Defense Analysis Paper P-2998, A Method for Sim-
ulating Correlated Random Variables from Partially-Specified Distri-
butions, by P. M. Lurie and M. S. Goldberg, Oct 1994

R. L. Iman and W. J. Conover. “A Distribution-Free Approach
to Inducing Rank Correlation Among Input Variables.” Com-
munications in Statistics: Simulation and Computation, Vol. 2,
No. 3, 311-334, 1982

Tecolote Research, Inc., Report CR-0644, Risk Model Compari-
sons for Cost Analysis, by W H. jago, M. K. Allen, and L. S.
Fichter, May 1993

F. Biery, D. Hudak, and Lansdowne. “Improving Cost Risk
Analyses.” Journal of Cost Analysis, Spring, 1994

J. H. Schuyler. “Credible Projections Now Require Decision
Analysis.” Cost Engineering, Vol. 34, No. 3, Mar 1992

4]




42

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

K. T. Wallenius. Cost Uncertainty Assessment Methodology: A Criti-
cal Overview, Technical Report 491, Dept of Mathematical Sci-
ences, Clemson University, Aug 1985

D. Samson. Managerial Decision Analysis. Irwin, 1988

K. T. Wallenius, Cost Uncertainty Assessment Methodology: New
Initiatives, Technical Report 492, Dept of Mathematical Sci-
ences, Clemson University, Aug 1985

S. A. Book and P. H. Young. Monte-Carlo Generation of Total-cost
Distributions When WBS Element Costs Are Correlated, submitted
24th annual DOD Cost Symposium, 1990

P. R. Garvey and A. E. Taub. A Joint Probability Model for Cost and
Schedule Uncertainties, The Mitre Corporation, presented at
the 26th annual DOD Cost Analysis Sympsium, Sep 1992

IDA Paper P-2732, Simulated Correlated Distributions With
Bounded Domains, by P. H. Lurie and M. S. Goldberg, Sep 1992

P. R. Garvey. “A General Analytic Approach to System Cost
Uncertainty Analysis.” Cost Analysis and Estimating, Eds. W. R.
Greer and D. A. Nussbaum, Springer-Verlag, 1990

R. A. Katz. “Parametric CERs for Replenishment Repair
Parts.” Cost Analysis and Estimating, Eds. W. R. Greer and D. A.
Nussbaum, Springer-Verlag, 1990

R. L. Abramson and P. H. Young. FRISKEM—Formal Risk Eval-
uation Methodology, submitted to Journal of Cost Analysis

Crystal Ball, (Software review) APICS—The Performance Advan-
tage, Jan 1994

R. C. Pfaffenberger and J. H. Patterson. Statistical Methods.
Irwin, 1987




Distribution list

SNDL

Al DASN - AIR PROGRAMS

AlA  DASN - MANPOWER

AlB  UNSECNAV

AlF  ASSTSECNAV FM WASHINGTON
Attn: NCA

Al]  ASSTSECNAV RDA WASHINGTON

Al DASN - C4I/EW/SPACE
PROGRAMS

AlJ DASN - MUW

AlJ  DASN - SHIP PROGRAMS

A2A ONR

A2A  OPA

A6 HQMC P&R (2 COPIES)

FF38 USNA ANNAPOLIS

FF42 NAVPGSCOL MONTEREY CA

FKA1A COMNAVAIRSYSCOM DC
Attn: AIR 4.2

FKA1B COMSPAWARSYSCOM DC

FKA1C COMNAVFACENGCOM VA

FKAIF COMNAVSUPSYSCOM DC

FKA1G COMNAVSEASYSCOM DC
Atim: SEA-017

FKPAD NAVSURFWARCEN
CARDEROCKDIV BETHESDA

FKP4E NAVSURFWARCENDIV

FKR6A NAVAIRWARCENACDIV

V12  CGMCCDC STUDIES AND
ANALYSES DIVISION

OPNAV
N4B
N801
N801C
N810
N811
N812
N812D
N863
N880B

OTHER

IDA

RAND SANTA MONICA
LMI

ARMY CEAC

AIR FORCE CAA

43



